日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Nonlinear response theory of molecular machines

MPS-Authors
/persons/resource/persons293201

Chatzittofi,  Michalis       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons245729

Agudo-Canalejo,  Jaime       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Publisher Version
(出版社版), 791KB

付随資料 (公開)
There is no public supplementary material available
引用

Chatzittofi, M., Agudo-Canalejo, J., & Golestanian, R. (2024). Nonlinear response theory of molecular machines. EPL, 147(2):. doi:10.1209/0295-5075/ad6a7e.


引用: https://hdl.handle.net/21.11116/0000-000F-BFF4-7
要旨
Chemical affinities are responsible for driving active matter systems out of equilibrium. At the nano-scale, molecular machines interact with the surrounding environment and are subjected to external forces. The mechano-chemical coupling which arises naturally in these systems reveals a complex interplay between chemical and mechanical degrees of freedom with strong impact on their active mechanism. By considering various models far from equilibrium, we show that the tuning of applied forces gives rise to a nonlinear response that causes a non-monotonic behaviour in the machines' activity. Our findings have implications in understanding, designing, and triggering such processes by controlled application of external fields, including the collective dynamics of larger non-equilibrium systems where the total dissipation and performance might be affected by internal and inter-particle interactions.