English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Generalized analytical description of relativistic strong-field ionization

MPS-Authors
/persons/resource/persons30684

Klaiber,  Michael       
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30572

Hatsagortsyan,  Karen Z.       
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  Christoph H.       
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Klaiber, M., Hatsagortsyan, K. Z., & Keitel, C. H. (2024). Generalized analytical description of relativistic strong-field ionization. Physical Review A, 110(2): 023103. doi:10.1103/PhysRevA.110.023103.


Cite as: https://hdl.handle.net/21.11116/0000-000F-CC38-D
Abstract
A relativistic analytical theory of strong-field ionization applicable across the regimes of deep tunneling up to over-the-barrier ionization (OTBI) is developed, accounting also for the bound-state polarization and the Stark shift beyond perturbation theory. The latter improvement with respect to the state-of-the-art quasiclassical theory of Perelomov-Popov-Terent'ev (PPT) for strong-field ionization is essential to describe analytically the ionization in the OTBI regime and to resolve the order-of-magnitude discrepancy of the ionization yield in the relativistic regime with respect to PPT theory that has remained unexplained since the numerical result using the Klein-Gordon equation of Hafizi et al. [Phys. Rev. Lett. 118, 133201 (2017)]. The predictions of the present relativistic model, in deviation to PPT theory, are shown to be observable using ultrashort laser pulses of relativistic intensities.