English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The DREAM implant: A lightweight, modular, and cost-effective implant system for chronic electrophysiology in head-fixed and freely behaving mice

MPS-Authors

Taylor,  Robert
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Havenith & Schölvinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Abd El Hay,  Muad
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Havenith & Schölvinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons207998

Havenith,  Martha Nari       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Havenith & Schölvinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

/persons/resource/persons141637

Schölvinck,  Marieke       
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;
Havenith & Schölvinck Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schröder, T., Taylor, R., Abd El Hay, M., Nemri, A., França, A., Battaglia, F., et al. (2024). The DREAM implant: A lightweight, modular, and cost-effective implant system for chronic electrophysiology in head-fixed and freely behaving mice. Journal of Visualized Experiments, 209: e66867. doi:10.3791/66867.


Cite as: https://hdl.handle.net/21.11116/0000-000F-CBAA-D
Abstract
Summary:

Here, we introduce a lightweight, cost-effective probe implant system for chronic electrophysiology in rodents optimized for ease of use, probe recovery, experimental versatility, and compatibility with behavior.

Abstract:

Chronic electrophysiological recordings in rodents have significantly improved our understanding of neuronal dynamics and their behavioral relevance. However, current methods for chronically implanting probes present steep trade-offs between cost, ease of use, size, adaptability, and long-term stability.

This protocol introduces a novel chronic probe implant system for mice called the DREAM (Dynamic, Recoverable, Economical, Adaptable, and Modular), designed to overcome the trade-offs associated with currently available options. The system provides a lightweight, modular and cost-effective solution with standardized hardware elements that can be combined and implanted in straightforward steps and explanted safely for recovery and multiple reuse of probes, significantly reducing experimental costs.

The DREAM implant system integrates three hardware modules: (1) a microdrive that can carry all standard silicon probes, allowing experimenters to adjust recording depth across a travel distance of up to 7 mm; (2) a three-dimensional (3D)-printable, open-source design for a wearable Faraday cage covered in copper mesh for electrical shielding, impact protection, and connector placement, and (3) a miniaturized head-fixation system for improved animal welfare and ease of use. The corresponding surgery protocol was optimized for speed (total duration: 2 h), probe safety, and animal welfare.

The implants had minimal impact on animals' behavioral repertoire, were easily applicable in freely moving and head-fixed contexts, and delivered clearly identifiable spike waveforms and healthy neuronal responses for weeks of post-implant data collection. Infections and other surgery complications were extremely rare.

As such, the DREAM implant system is a versatile, cost-effective solution for chronic electrophysiology in mice, enhancing animal well-being, and enabling more ethologically sound experiments. Its design simplifies experimental procedures across various research needs, increasing accessibility of chronic electrophysiology in rodents to a wide range of research labs.