English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comprehensive analysis of local and nonlocal amplitudes in the B0 → K∗0μ+μ decay

MPS-Authors
/persons/resource/persons30992

Schmelling,  M.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31206

Zavertyaev,  M.       
Division Prof. Dr. James A. Hinton, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

LHCb Collaboration, Aaij, R., Abdelmotteleb, A. S. W., Abellan Beteta, C., Abudinén, F., Ackernley, T., et al. (2024). Comprehensive analysis of local and nonlocal amplitudes in the B0 → K∗0μ+μ decay. Journal of High Energy Physics, 2024(9): 26. doi:10.1007/JHEP09(2024)026.


Cite as: https://hdl.handle.net/21.11116/0000-000F-D48B-5
Abstract
A comprehensive study of the local and nonlocal amplitudes contributing to the decay B0 → K∗0(→ K+π+μ is performed by analysing the phase-space distribution of the decay products. The analysis is based on pp collision data corresponding to an integrated luminosity of 8.4 fb−1 collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient C9, responsible for vector dimuon currents, exhibits a 2.1σ deviation from the Standard Model expectation. The Wilson Coefficients C10, C′9 and C′10 are all in better agreement than C9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions from B0 → K∗0+τ → μ+μ] rescattering, resulting in the first direct measurement of the bsτ τ vector effective-coupling C .