Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

MINFLUX reveals dynein stepping in live neurons

MPG-Autoren
/persons/resource/persons301940

Schleske,  Jonas M.
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons224968

Hubrich,  Jasmine
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons298717

Wirth,  Jan Otto
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons141821

D'Este,  Elisa
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons36532

Engelhardt,  Johann
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons15210

Hell,  Stefan W.       
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schleske, J. M., Hubrich, J., Wirth, J. O., D'Este, E., Engelhardt, J., & Hell, S. W. (2024). MINFLUX reveals dynein stepping in live neurons. Proceedings of the National Academy of Sciences of the United States of America, 121(38): e2412241121, pp. 1-8. doi:10.1073/pnas.2412241121.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-DF02-4
Zusammenfassung
Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.