Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analytic weak-signal approximation of the Bayes factor for continuous gravitational waves

MPG-Autoren
/persons/resource/persons40534

Prix,  Reinhard
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2409.13069.pdf
(Preprint), 992KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Prix, R. (2025). Analytic weak-signal approximation of the Bayes factor for continuous gravitational waves. Classical and Quantum Gravity, 42(6): 065006. doi:10.1088/1361-6382/adb097.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-DFCF-E
Zusammenfassung
We generalize the targeted $\mathcal{B}$-statistic for continuous
gravitational waves by modeling the $h_0$-prior as a half-Gaussian distribution
with scale parameter $H$. This approach retains analytic tractability for two
of the four amplitude marginalization integrals and recovers the standard
$\mathcal{B}$-statistic in the strong-signal limit ($H\rightarrow\infty$). By
Taylor-expanding the weak-signal regime ($H\rightarrow0$), the new prior
enables fully analytic amplitude marginalization, resulting in a simple,
explicit statistic that is as computationally efficient as the
maximum-likelihood $\mathcal{F}$-statistic, but significantly more robust.
Numerical tests show that for day-long coherent searches, the weak-signal Bayes
factor achieves sensitivities comparable to the $\mathcal{F}$-statistic, though
marginally lower than the standard $\mathcal{B}$-statistic (and the Bero-Whelan
approximation). In semi-coherent searches over short (compared to a day)
segments, this approximation matches or outperforms the weighted
dominant-response $\mathcal{F}_{\mathrm{ABw}}$-statistic and returns to the
sensitivity of the (weighted) $\mathcal{F}_{\mathrm{w}}$-statistic for longer
segments. Overall the new Bayes-factor approximation demonstrates
state-of-the-art or improved sensitivity across a wide range of segment lengths
we tested (from 900s to 10days).