English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dispersion-corrected r2SCAN based double-hybrid functionals

MPS-Authors
/persons/resource/persons273665

Bursch,  Markus
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wittmann, L., Neugebauer, H., Grimme, S., & Bursch, M. (2023). Dispersion-corrected r2SCAN based double-hybrid functionals. The Journal of Chemical Physics, 159(22): 224103. doi:10.1063/5.0174988.


Cite as: https://hdl.handle.net/21.11116/0000-000F-EED8-2
Abstract
The regularized and restored semi-local meta-generalized gradient approximation (meta-GGA) exchange–correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208–8215 (2020)] is used to create adiabatic-connection-derived global double-hybrid functionals employing spin-opposite-scaled MP2. The 0-DH, CIDH, QIDH, and 0–2 type double-hybrid functionals are assessed as a starting point for further modification. Variants with 50% and 69% Hartree–Fock exchange (HFX) are empirically optimized (Pr2SCAN50 and Pr2SCAN69), and the effect of MP2-regularization (κPr2SCAN50) and range-separated HFX (ωPr2SCAN50) is evaluated. All optimized functionals are combined with the state-of-the-art London dispersion corrections D4 and NL. The resulting functionals are assessed comprehensively for their performance on main-group and metal-organic thermochemistry on 90 different benchmark sets containing 25 800 data points. These include the extensive GMTKN55 database, additional sets for main-group chemistry, and multiple sets for transition-metal complexes, including the ROST61, the MOR41, and the MOBH35 sets. As the main target of this study is the development of a broadly applicable, robust functional with low empiricism, special focus is put on variants with moderate amounts of HFX (50%), which are compared to the so far successful PWPB95-D4 (50% HFX, 20% MP2 correlation) functional. The overall best variant, ωPr2SCAN50-D4, performs well on main-group and metal-organic thermochemistry, followed by Pr2SCAN69-D4 that offers a slight edge for metal-organic thermochemistry and by the low HFX global double-hybrid Pr2SCAN50-D4 that performs robustly across all tested sets. All four optimized functionals, Pr2SCAN69-D4, Pr2SCAN50-D4, κPr2SCAN50-D4, and ωPr2SCAN50-D4, outperform the PWPB95-D4 functional.