English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dipeptide metabolite, glutamyl-glutamate mediates microbe-host interaction to boost spermatogenesis

MPS-Authors
/persons/resource/persons78439

Nagy,  Istvan
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Juhasz, B., Horvath, K., Kuti, D., Shen, J., Feuchtinger, A., Zhang, C., et al. (2024). Dipeptide metabolite, glutamyl-glutamate mediates microbe-host interaction to boost spermatogenesis. Scientific Reports, 14(1): 21864. doi:10.1038/s41598-024-73216-y.


Cite as: https://hdl.handle.net/21.11116/0000-000F-EDDE-D
Abstract
The decrease in sperm count and infertility is a global issue that remains unresolved. By screening environmental bacterial isolates, we have found that a novel lactic acid bacterium, Lactiplantibacillus plantarum SNI3, increased testis size, testosterone levels, sperm count, sexual activity and fertility in mice that have consumed the bacteria for four weeks. The abundance of L. plantarum in the colon microbiome was positively associated with sperm count. Fecal microbiota transplantation (FMT) from L. plantarum SNI3-dosed mice improved testicular functions in microbiome-attenuated recipient animals. To identify mediators that confer pro-reproductive effects on the host, untargeted in situ mass spectrometry metabolomics was performed on testis samples of L. plantarum SNI3-treated and control mice. Enrichment pathway analysis revealed several perturbed metabolic pathways in the testis of treated mice. Within the testis, a dipeptide, glutamyl-glutamate (GluGlu) was the most upregulated metabolite following L. plantarum SNI3 administration. To validate the pro-reproductive feature of GluGlu, systemic and local injections of the dipeptide have been performed. gamma-GluGlu increased sperm count but had no effect on testosterone. These findings highlight the role of gamma-GluGlu in mediating spermatogenetic effects of L. plantarum on the male mouse host and -following relevant human clinical trials- may provide future tools for treating certain forms of male infertility.