Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Historical Insights at Scale: A Corpus-wide Machine Learning Analysis of Early Modern Astronomic Tables

MPG-Autoren
/persons/resource/persons193936

Büttner,  Jochen
Department Structural Changes in Systems of Knowledge, Max Planck Institute for the History of Science, Max Planck Society;

/persons/resource/persons194421

Valleriani,  Matteo       
Department Structural Changes in Systems of Knowledge, Max Planck Institute for the History of Science, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ciadv.adj1719.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Eberle, O., Büttner, J., El-Hajj, H., Montavon, G., Müller, K.-R., & Valleriani, M. (2024). Historical Insights at Scale: A Corpus-wide Machine Learning Analysis of Early Modern Astronomic Tables. Science Advances, 10(43 (Article eadj1719)): eadj1719, pp. 1-16. doi:10.1126/sciadv.adj1719.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-0768-2
Zusammenfassung
Understanding the evolution and dissemination of human knowledge over time faces challenges due to the abundance of historical materials and limited specialist resources. However, the digitization of historical archives presents an opportunity for AI-supported analysis. This study advances historical analysis by using an atomization-recomposition method that relies on unsupervised machine learning and explainable AI techniques. Focusing on the “Sacrobosco Collection,” consisting of 359 early modern printed editions of astronomy textbooks from European universities (1472–1650), totaling 76,000 pages, our analysis uncovers temporal and geographic patterns in knowledge transformation. We highlight the relevant role of astronomy textbooks in shaping a unified mathematical culture, driven by competition among educational institutions and market dynamics. This approach deepens our understanding by grounding insights in historical context, integrating with traditional methodologies. Case studies illustrate how communities embraced scientific advancements, reshaping astronomic and geographical views and exploring scientific roots amidst a changing world.