Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Revealing the Reaction Pathway of Anodic Hydrogen Evolution at Magnesium Surfaces in Aqueous Electrolytes

MPG-Autoren
/persons/resource/persons261432

Deißenbeck,  Florian
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max Planck Institute for Sustainable Materials, Max Planck Society;

/persons/resource/persons204799

Surendralal,  Sudarsan
Computational Materials Design, Max Planck Institute for Sustainable Materials, Max Planck Society;

/persons/resource/persons125433

Todorova,  Mira
Electrochemistry and Corrosion, Computational Materials Design, Max Planck Institute for Sustainable Materials, Max Planck Society;

/persons/resource/persons125477

Wippermann,  Stefan Martin
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max Planck Institute for Sustainable Materials, Max Planck Society;
Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max Planck Institute for Sustainable Materials, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deißenbeck, F., Surendralal, S., Todorova, M., Wippermann, S. M., & Neugebauer, J. (2024). Revealing the Reaction Pathway of Anodic Hydrogen Evolution at Magnesium Surfaces in Aqueous Electrolytes. Journal of the American Chemical Society. doi:10.1021/jacs.4c10086.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-08DF-B
Zusammenfassung
Aqueous metal corrosion is a major economic concern in modern society. A phenomenon that has puzzled generations of scientists in this field is the so-called anomalous hydrogen evolution: the violent dissolution of magnesium under electron-deficient (anodic) conditions, accompanied by strong hydrogen evolution and a key mechanism hampering Mg technology. Experimental studies have indicated the presence of univalent Mg+ in solution, but these findings have been largely ignored because they defy our common chemical understanding and evaded direct experimental observation. Using recent advances in the ab initio description of solid–liquid electrochemical interfaces under controlled potential conditions, we describe the full reaction path of Mg atom dissolution from a kinked Mg surface under anodic conditions. Our study reveals the formation of a solvated [Mg2+(OH)−]+ ion complex, challenging the conventional assumption of Mg2+ ion formation. This insight provides an intuitive explanation for the postulated presence of (Coulombically) univalent Mg+ ions, and the absence of protective oxide/hydroxide layers normally formed under anodic/oxidizing conditions. The discovery of this unexpected and unconventional reaction mechanism is crucial for identifying new strategies for corrosion prevention and can be transferred to other metals.