English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Skin microdialysis detects distinct immunologic patterns in chronic inflammatory skin diseases

MPS-Authors
/persons/resource/persons85543

Lenz,  Christof
Research Group of Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Publisher Version
(Publisher version), 3MB

Supplementary Material (public)

1-s2.0-S0091674924007826-mmc1.docx
(Supplementary material), 2MB

Citation

Hollstein, M. M., Traidl, S., Heetfeld, A., Forkel, S., Leha, A., Alkon, N., et al. (2024). Skin microdialysis detects distinct immunologic patterns in chronic inflammatory skin diseases. The Journal of Allergy and Clinical Immunology, 154(6), 1450-1461. doi:10.1016/j.jaci.2024.06.024.


Cite as: https://hdl.handle.net/21.11116/0000-0010-4DE3-8
Abstract
Background:
Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data.

Objective:
We characterized lesional and nonlesional skin of inflammatory skin diseases using skin microdialysis.

Methods:
Skin microdialysis samples from patients with atopic dermatitis (AD, n = 6), psoriasis vulgaris (PSO, n = 7), or prurigo nodularis (PN, n = 6), as well as healthy controls (n = 7), were subjected to proteomic and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines.

Results:
Among the top 20 enriched Gene Ontology (GO; geneontology.org
) annotations, nicotinamide adenine dinucleotide metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.jp/kegg
) pathways in these 3 groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of MCP-1 compared with nonlesional skin. IL-8 was elevated in lesional versus nonlesional AD and PSO skin, whereas IL-12p40 and IL-22 were higher only in lesional PSO skin. Integrated single-cell RNA sequencing data revealed identical cellular sources of these cytokines in AD, PSO, and PN.

Conclusion:
On the basis of microdialysates, the proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1, and IL-12p40 might be suitable markers for minimally invasive molecular profiling.