English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment

MPS-Authors
/persons/resource/persons271111

Witte,  H       
Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ       
Department Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Almeida, A., Rocha, H., Raas, M., Witte, H., Sommer, R., Snel, B., et al. (2024). An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment. Journal of Cell Science, 137(24): jcs263466. doi:10.1242/jcs.263466.


Cite as: https://hdl.handle.net/21.11116/0000-0010-62EE-4
Abstract
Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale. We found that, despite being present in common ancestors, CENP-E was lost more frequently in taxa with holocentric chromosomes, such as Hemiptera and Nematoda. Functional experiments in two nematodes with holocentric chromosomes in which a CENP-E ortholog is absent (Caenorhabditis elegans) or present (Pristionchus pacificus) revealed that targeted expression of human CENP-E to C. elegans kinetochores partially rescued chromosome alignment defects associated with attenuated polar-ejection forces, whereas CENP-E inactivation in P. pacificus had no detrimental effects on mitosis and viability. These data showcase the dispensability of CENP-E for mitotic chromosome alignment in species with larger kinetochores.