English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A magneto-thermoelectric with a high figure of merit in topological insulator Bi88Sb12

MPS-Authors
/persons/resource/persons230813

Pan,  Yu
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons255336

He,  Bin
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons285720

Feng,  Xiaolong
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons260774

Chen,  Dong
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pan, Y., He, B., Feng, X., Li, F., Chen, D., Burkhardt, U., et al. (2025). A magneto-thermoelectric with a high figure of merit in topological insulator Bi88Sb12. Nature Materials, 24, 76-82. doi:10.1038/s41563-024-02059-9.


Cite as: https://hdl.handle.net/21.11116/0000-0010-812C-B
Abstract
High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.7 ± 0.2 at 180 K and 0.7 T in a single-crystalline Bi88Sb12 topological insulator. This result fills a gap of a high performance below 300 K and is promising for low-temperature thermoelectric applications. The large magneto-Seebeck response is attributed to the ultrahigh mobility and the Dirac band dispersion. The application of a low magnetic field to achieve a high thermoelectric performance can be extended to topological materials with similar features that are rapidly emerging because it synergistically optimizes the thermoelectric parameters. © The Author(s) 2025.