Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification

MPG-Autoren
/persons/resource/persons292279

Kalash,  Mahmoud
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons201034

Chekhova,  Maria
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

opticaq-3-1-36.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Barakat, I., Kalash, M., Scharwald, D., Sharapova, P., Lindlein, N., & Chekhova, M. (2025). Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification. Optica quantum, 3, 36-44. doi:10.1364/OPTICAQ.524682.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-84F9-0
Zusammenfassung
Multimode squeezed light is increasingly popular in photonic quantum technologies, including sensing, imaging, and computation. Existing methods for its characterization are technically complex, often reducing the level of squeezing and typically addressing only a single mode at a time. Here, for the first time, we employ optical parametric amplification to characterize multiple squeezing eigenmodes simultaneously. We retrieve the shapes and squeezing degrees of all modes at once through direct detection followed by modal decomposition. This method is tolerant to inefficient detection and does not require a local oscillator. For a spectrally and spatially multimode squeezed vacuum, we characterize the eight strongest spatial modes, obtaining squeezing and anti-squeezing values of up to −5.2 ± 0.2 dB and 8.6 ± 0.3 dB, respectively, despite 50% detection loss. This work, being the first exploration of an optical parametric amplifier’s multimode capability for squeezing detection, paves the way for real-time multimode squeezing detection.