Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mean-field study of quantum oscillations in two-dimensional Kondo insulators

MPG-Autoren
/persons/resource/persons295656

Wang,  K.
Microstructured Quantum Matter Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.111.075131.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wang, K., Ge, Y., & Komijani, Y. (2025). Mean-field study of quantum oscillations in two-dimensional Kondo insulators. Physical Review B, 111(7): 075131. doi:10.1103/PhysRevB.111.075131.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-C4B1-8
Zusammenfassung
Magnetic oscillations in strongly correlated insulating systems have garnered interest due to oscillations seemingly originating from the bulk, despite an anticipated gapped spectrum. We use the large-N mean-field theory to study the behavior of normal and topological Kondo insulators under a magnetic field. In both cases spinons acquire a charge and hybridize with electrons, producing magnetic oscillations that resemble two-band noninteracting systems. We show that in such band insulators magnetic oscillations are exponentially suppressed at weak magnetic fields. A self-consistent mean-field calculation for the Kondo insulators reveals that the temperature dependence of the oscillations departs from the noninteracting case due to the temperature and magnetic-field dependence of the hybridization, even though the mean-field parameters remain homogeneous. Higher temperature results in the Kondo breakdown, where the magnetic oscillation is solely due to the decoupled conduction electrons. These findings offer different insights into the magnetic properties of Kondo insulators, with implications for interpreting experimental results in heavy-fermion materials like SmB6.