Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation.

MPG-Autoren
/persons/resource/persons219048

Caldarelli,  Antonio
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons289574

Rost,  Fabian
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons285724

Rodriguez-Muela,  Natalia
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grass, T., Dokuzluoglu, Z., Buchner, F., Rosignol, I., Thomas, J., Caldarelli, A., et al. (2024). Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell reports. Medicine, 5(8): 101659. doi:10.1016/j.xcrm.2024.101659.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-D54F-6
Zusammenfassung
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.