Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase coexistence in nonreciprocal quorum-sensing active matter

MPG-Autoren
/persons/resource/persons292703

Duan,  Yu       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons245729

Agudo-Canalejo,  Jaime       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons243224

Mahault,  Benoit       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Publisher Version
(Verlagsversion), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Duan, Y., Agudo-Canalejo, J., Golestanian, R., & Mahault, B. (2025). Phase coexistence in nonreciprocal quorum-sensing active matter. Physical Review Research, 7: 013234. doi:10.1103/PhysRevResearch.7.013234.


Zitierlink: https://hdl.handle.net/21.11116/0000-0010-E39F-B
Zusammenfassung
Motility and nonreciprocity are two primary mechanisms for self-organization in active matter. In a recent study [Phys. Rev. Lett. 131, 148301 (2023)], we explored their joint influence in a minimal model of two-species quorum-sensing active particles interacting via mutual motility regulation. Our results notably revealed a highly dynamic phase of chaotic chasing bands that is absent when either nonreciprocity or self-propulsion is missing. Here, we examine further the phase behavior of nonreciprocal quorum-sensing active particles, distinguishing between the regimes of weak and strong nonreciprocity. In the weakly nonreciprocal regime, this system exhibits multicomponent motility-induced phase separation. We establish an analytical criterion for the associated phase coexistence, enabling a quantitative prediction of the phase diagram of a large class of nonreciprocal mixtures. For strong nonreciprocity, where the dynamics is chase-and-run-like, we determine the phase behavior and show that it depends strongly on the scale of observation. In small systems, our numerical simulations reveal a phenomenology consistent with phenomenological models, comprising traveling phase-separated domains and spiral-like defect patterns. However, we show that these structures are generically unstable in large systems, where they are superseded by bulk phase coexistence between domains that are either homogeneous or populated by mesoscopic chasing bands. Crucially, this implies that collective motion totally vanishes at large scales, while the breakdown of our analytical criterion for this phase coexistence with multiscale structures prevents us from predicting the corresponding phase diagram.