日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations

MPS-Authors
/persons/resource/persons224330

Savai,  Rajkumar
Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Funk, J. S., Klimovich, M., Drangenstein, D., Pielhoop, O., Hunold, P., Borowek, A., Noeparast, M., Pavlakis, E., Neumann, M., Balourdas, D.-I., Kochhan, K., Merle, N., Bullwinkel, I., Wanzel, M., Elmshaeuser, S., Teply-Szymanski, J., Nist, A., Procida, T., Bartkuhn, M., Humpert, K., Mernberger, M., Savai, R., Soussi, T., Joerger, A. C., & Stiewe, T. (2025). Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. NATURE GENETICS, 57(1). doi:10.1038/s41588-024-02039-4.


引用: https://hdl.handle.net/21.11116/0000-0010-F342-1
要旨
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.