Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Winter-spring phytoplankton blooms in Dabob Bay, Washington


Pohnert,  G.
Department of Bioorganic Chemistry, MPI for Chemical Ecology, Max Planck Society;


Wichard,  T.
Department of Bioorganic Chemistry, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Horner, R. A., Postel, J. R., Halsband-Lenk, C., Pierson, J. J., Pohnert, G., & Wichard, T. (2005). Winter-spring phytoplankton blooms in Dabob Bay, Washington. Progress in Oceanography, 67(3-4), 286-313. doi:10.1016/j.pocean.2005.09.005.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-A0DB-8
Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers.

Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m−2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.