English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Probing macroscopic quantum states with a sub-Heisenberg accuracy

MPS-Authors
/persons/resource/persons40482

Müller-Ebhardt,  Helge
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4281

Rehbein,  Henning
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40497

Somiya,  Kentaro
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4285

Chen,  Yanbei
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

0905.3729
(Preprint), 871KB

PRA012114.pdf
(Any fulltext), 874KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Miao, H., Danilishin, S., Müller-Ebhardt, H., Rehbein, H., Somiya, K., & Chen, Y. (2010). Probing macroscopic quantum states with a sub-Heisenberg accuracy. Physical Review. A, 81: 012114. doi:10.1103/PhysRevA.81.012114.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-BB51-7
Abstract
Significant achievements in the reduction of classical-noise floor will allow macroscopic systems to prepare nearly Heisenberg-Limited quantum states through a continuous measurement, i.e. conditioning. In order to probe the conditional quantum state and confirm quantum dynamics, we propose use of an optimal time-domain variational measurement, in which the homodyne detection phase varies in time. This protocol allows us to characterize the macroscopic quantum state below the Heisenberg Uncertainty -- i.e. Quantum Tomography -- and the only limitation comes from readout loss which enters in a similar manner as the frequency-domain variational scheme proposed by Kimble et al.. In the case of no readout loss, it is identical to the back-action-evading scheme invented by Vyatchanin et al. for detecting gravitational-wave (GW) signal with known arrival time. As a special example and to motivate Macroscopic Quantum Mechanics (MQM) experiments with future GW detectors, we mostly focus on the free-mass limit -- the characteristic measurement frequency is much higher than the oscillator frequency -- and further assume the classical noises are Markovian, which captures the main feature of a broadband GW detector. Besides, we consider verifications of Einstein-Podolsky-Rosen (EPR) type entanglements between macroscopic test masses in GW detectors, which enables to test one particular version of Gravity Decoherence conjectured by Diosi and Penrose.