English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The search for spinning black hole binaries in mock LISA data using a genetic algorithm

MPS-Authors
/persons/resource/persons20655

Babak,  Stanislav
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1001.5380
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Petiteau, A., Shang, Y., Babak, S., & Feroz, F. (2010). The search for spinning black hole binaries in mock LISA data using a genetic algorithm. Physical Review D., 81: 104016. doi:10.1103/PhysRevD.81.104016.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-BC04-F
Abstract
Coalescing massive Black Hole binaries are the strongest and probably the most important gravitational wave sources in the LISA band. The spin and orbital precessions bring complexity in the waveform and make the likelihood surface richer in structure as compared to the non-spinning case. We introduce an extended multimodal genetic algorithm which utilizes the properties of the signal and the detector response function to analyze the data from the third round of mock LISA data challenge (MLDC 3.2). The performance of this method is comparable, if not better, to already existing algorithms. We have found all five sources present in MLDC 3.2 and recovered the coalescence time, chirp mass, mass ratio and sky location with reasonable accuracy. As for the orbital angular momentum and two spins of the Black Holes, we have found a large number of widely separated modes in the parameter space with similar maximum likelihood values.