Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

The Kachna L1/L2 picture replication corpus

MPG-Autoren
/persons/resource/persons1469

Ernestus,  Mirjam
Language Comprehension Group, MPI for Psycholinguistics, Max Planck Society;
Center for Language Studies , External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

spilkova_lrec_2010.pdf
(Verlagsversion), 670KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Spilková, H., Brenner, D., Öttl, A., Vondřička, P., Van Dommelen, W., & Ernestus, M. (2010). The Kachna L1/L2 picture replication corpus. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, et al. (Eds.), Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10) (pp. 2432-2436). Paris: European Language Resources Association (ELRA).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0012-C8FA-8
Zusammenfassung
This paper presents the Kachna corpus of spontaneous speech, in which ten Czech and ten Norwegian speakers were recorded both in their native language and in English. The dialogues are elicited using a picture replication task that requires active cooperation and interaction of speakers by asking them to produce a drawing as close to the original as possible. The corpus is appropriate for the study of interactional features and speech reduction phenomena across native and second languages. The combination of productions in non-native English and in speakers’ native language is advantageous for investigation of L2 issues while providing a L1 behaviour reference from all the speakers. The corpus consists of 20 dialogues comprising 12 hours 53 minutes of recording, and was collected in 2008. Preparation of the transcriptions, including a manual orthographic transcription and an automatically generated phonetic transcription, is currently in progress. The phonetic transcriptions are automatically generated by aligning acoustic models with the speech signal on the basis of the orthographic transcriptions and a dictionary of pronunciation variants compiled for the relevant language. Upon completion the corpus will be made available via the European Language Resources Association (ELRA).