Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

A two-pass approach for handling out-of-vocabulary words in a large vocabulary recognition task

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 197KB

Supplementary Material (public)
There is no public supplementary material available

Scharenborg, O., Seneff, S., & Boves, L. (2007). A two-pass approach for handling out-of-vocabulary words in a large vocabulary recognition task. Computer, Speech & Language, 21, 206-218. doi:10.1016/j.csl.2006.03.003.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-D1DC-3
This paper addresses the problem of recognizing a vocabulary of over 50,000 city names in a telephone access spoken dialogue system. We adopt a two-stage framework in which only major cities are represented in the first stage lexicon. We rely on an unknown word model encoded as a phone loop to detect OOV city names (referred to as ‘rare city’ names). We use SpeM, a tool that can extract words and word-initial cohorts from phone graphs from a large fallback lexicon, to provide an N-best list of promising city name hypotheses on the basis of the phone graph corresponding to the OOV. This N-best list is then inserted into the second stage lexicon for a subsequent recognition pass. Experiments were conducted on a set of spontaneous telephone-quality utterances; each containing one rare city name. It appeared that SpeM was able to include nearly 75% of the correct city names in an N-best hypothesis list of 3000 city names. With the names found by SpeM to extend the lexicon of the second stage recognizer, a word accuracy of 77.3% could be obtained. The best one-stage system yielded a word accuracy of 72.6%. The absolute number of correctly recognized rare city names almost doubled, from 62 for the best one-stage system to 102 for the best two-stage system. However, even the best two-stage system recognized only about one-third of the rare city names retrieved by SpeM. The paper discusses ways for improving the overall performance in the context of an application.