Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

ASR decoding in a computational model of human word recognition

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 118KB

Supplementary Material (public)
There is no public supplementary material available

ten Bosch, L., & Scharenborg, O. (2005). ASR decoding in a computational model of human word recognition. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1241-1244). ISCA Archive.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0012-D238-9
This paper investigates the interaction between acoustic scores and symbolic mismatch penalties in multi-pass speech decoding techniques that are based on the creation of a segment graph followed by a lexical search. The interaction between acoustic and symbolic mismatches determines to a large extent the structure of the search space of these multipass approaches. The background of this study is a recently developed computational model of human word recognition, called SpeM. SpeM is able to simulate human word recognition data and is built as a multi-pass speech decoder. Here, we focus on unravelling the structure of the search space that is used in SpeM and similar decoding strategies. Finally, we elaborate on the close relation between distances in this search space, and distance measures in search spaces that are based on a combination of acoustic and phonetic features.