English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Signal transduction of erbB receptors in trastuzumab (Herceptin) sensitive and resistant cell lines: local stimulation using magnetic microspheres as assessed by quantitative digital microscopy

MPS-Authors
/persons/resource/persons15091

Friedlaender,  E.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15565

Nagy,  P.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14791

Arndt-Jovin,  D. J.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15286

Jovin,  T. M.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15951

Vereb,  G.
Department of Molecular Biology, MPI for biophysical chemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Friedlaender, E., Nagy, P., Arndt-Jovin, D. J., Jovin, T. M., Szoelloesi, J., & Vereb, G. (2005). Signal transduction of erbB receptors in trastuzumab (Herceptin) sensitive and resistant cell lines: local stimulation using magnetic microspheres as assessed by quantitative digital microscopy. Cytometry, 67: DOI: 10.1002/cyto.a.20173, pp. 161-171. Retrieved from http://www3.interscience.wiley.com/cgi-bin/fulltext/112092818/HTMLSTART.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0012-EAA6-E
Abstract
Background: ErbB2 (HER-2), a member of the epidermal growth factor (EGF) receptor family, is a class I transmembrane receptor tyrosine kinase. Although erbB2 has no known physiologic ligand, it can form complexes with other members of the family and undergo transactivation of its very potent kinase activity, thereby initiating downstream signaling and cell proliferation. ErbB2 is a frequent pathologic marker in ductal invasive breast carcinomas and is targeted by using a specific humanized monoclonal antibody, trastuzumab (Herceptin). The antibody is effective in only 20% to 50% of erbB2-positive tumors, and this resistance, as yet poorly understood, constitutes a major therapeutic challenge. Methods: Magnetic microspheres coated with ligands or antibodies are widely used for separation of proteins andcells and allow localized, high intensity, and precisely timed stimulation of cells. We used EGF- and trastuzumab-covered paramagnetic microspheres, quantitative confocal laser scanning microscopy, and digital image processing to investigate the (trans)activation of and local signal propagation from erbB1 and erbB2 on trastuzumab sensitive and resistant carcinoma cell lines expressing these receptors at high levels. Results: On A431 cells expressing high levels of endogenous erbB1 and transfected erbB2-mYFP (A4-erbB2-mYFP F4 cell line), EGF-coupled-microspheres activated erbB1 and transactivated erbB2-mYFP. In two other cell lines with comparable erbB2 expression but lower levels of erbB1, EGF microspheres transactivated erbB2 less efficiently. Trastuzumab in solution activated erbB2 on A4-erbB2-mYFP and the trastuzumab sensitive SKBR-3 cells, but only negligibly on the resistant JIMT-1 cells that showed a 10 times higher Kd for the antibody. Nevertheless, pronounced erbB2 activation and tyrosine phosphorylation could be detected after stimulation with trastuzumab-coupled microspheres in all cell lines, although transactivation of erbB1 was negligible. Receptor phosphorylation was restricted to the immediate proximity of the microspheres, i.e., receptor clusters external to these locations remained inactive. Conclusion: ErbB1 ligand and erbB2 specific antibody attached to magnetic microspheres are efficient tools in assessing erbB activation, localized signal propagation, and erbB heterodimer formation. Trastuzumab coupled to microspheres is more efficient at accessing erbB2 and activating it than trastuzumab in solution.