Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intramolecular photoinduced electron transfer in zwitterionic quinolinium dyes - Experimental and theoretical studies

MPG-Autoren
/persons/resource/persons15290

Kaeb,  G.
Department of Spectroscopy and Photochemical Kinetics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

599751.pdf
(Verlagsversion), 358KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Engel, T., Kaeb, G., & Lanig, H. (2002). Intramolecular photoinduced electron transfer in zwitterionic quinolinium dyes - Experimental and theoretical studies. Zeitschrift für Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 216, 305-332.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0012-F4B8-C
Zusammenfassung
Quinolinium cations and quinolinium betaines were investigated in the representative solvents water and acetonitrile at room temperature using stationary and time-resolved fluorescence spectroscopy (Single-Photon-Counting-method). Experimental results reveal that sulfoalkyl- and carboxyalkyl-quinolinium compounds display a strikingly different behavior in the two solvents. Furthermore, the fluorescence lifetime depends on the length of the spacer for the sulfoalkyl compounds in acetonitrile and the carboxyalkyl compounds in water, respectively. This suggests an intramolecular interaction of the anionic headgroups with the quinolinium system in the excited state. To support this idea. different positions at the chromophore are substituted by a methylgroup in order to perturb the proposed interaction. With the intention to understand the dynamics of the postulated photoinduced electron transfer from the anionic group onto the excited quinolinium chromophore, semiempirical quantum chemical calculations were performed on the species using the PM3 hamiltonian including solvent effects by a self consistent reaction field (SCRF). We show that the Marcus theory of electron transfer may serve as a theoretical basis for a natural interpretation of the dynamic fluorescence quenching behavior.