English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Oscillatory neuronal dynamics during language comprehension

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)

Bastiaansen_Hagoort_Oscillatory_2006.pdf
(Publisher version), 751KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bastiaansen, M. C. M., & Hagoort, P. (2006). Oscillatory neuronal dynamics during language comprehension. In C. Neuper, & W. Klimesch (Eds.), Event-related dynamics of brain oscillations (pp. 179-196). Amsterdam: Elsevier.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-1E94-0
Abstract
Language comprehension involves two basic operations: the retrieval of lexical information (such as phonologic, syntactic, and semantic information) from long-term memory, and the unification of this information into a coherent representation of the overall utterance. Neuroimaging studies using hemo¬dynamic measures such as PET and fMRI have provided detailed information on which areas of the brain are involved in these language-related memory and unification operations. However, much less is known about the dynamics of the brain's language network. This chapter presents a literature review of the oscillatory neuronal dynamics of EEG and MEG data that can be observed during language comprehen¬sion tasks. From a detailed review of this (rapidly growing) literature the following picture emerges: memory retrieval operations are mostly accompanied by increased neuronal synchronization in the theta frequency range (4-7 Hz). Unification operations, in contrast, induce high-frequency neuronal synchro¬nization in the beta (12-30 Hz) and gamma (above 30 Hz) frequency bands. A desynchronization in the (upper) alpha frequency band is found for those studies that use secondary tasks, and seems to correspond with attentional processes, and with the behavioral consequences of the language comprehension process. We conclude that it is possible to capture the dynamics of the brain's language network by a careful analysis of the event-related changes in power and coherence of EEG and MEG data in a wide range of frequencies, in combination with subtle experimental manipulations in a range of language comprehension tasks. It appears then that neuronal synchrony is a mechanism by which the brain integrates the different types of information about language (such as phonological, orthographic, semantic, and syntactic infor¬mation) represented in different brain areas.