English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T

MPS-Authors
/persons/resource/persons19896

Norris,  David G.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20125

Zysset,  Stefan
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19861

Mildner,  Toralf
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20106

Wiggins,  Christopher J.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

17232.pdf
(Any fulltext), 254KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Norris, D. G., Zysset, S., Mildner, T., & Wiggins, C. J. (2002). An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T. NeuroImage, 15(3), 719-726. doi:10.1006/nimg.2001.1005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-9D43-E
Abstract
This study examines the value of spin-echo-based fMRI for cognitive studies at the main magnetic field strength of 3 T using a spin-echo EPI (SE-EPI) sequence and a Stroop color-word matching task. SE-EPI has the potential advantage over conventional gradient-echo EPI (GE-EPI) that signal losses caused by dephasing through the slice are not present, and hence although image distortion will be the same as for an equivalent GE-EPI sequence, signal voids will be eliminated. The functional contrast in SE-EPI will be lower than for GE-EPI, as static dephasing effects do not contribute. As an auxiliary experiment interleaved diffusion-weighted and non-diffusion-weighted SE-EPI was performed in the visual cortex to further elucidate the mechanims of functional contrast. In the Stroop experiment activation was detected in all areas previously found using GE-EPI. Additional frontopolar and ventral frontomedian activations were also found, which could not be detected using GE-EPI. The experiments from visual cortex indicated that at 3 T the BOLD signal change has contributions from the extravascular space and larger blood vessels in roughly equal amounts. In comparison with GE-EPI the absence of static dephasing effects would seem to result in a superior intrinsic spatial resolution. In conclusion the sensitivity of SE-EPI at 3 T is sufficient to make it the method of choice for fMR studies that require a high degree of spatial localization or where the requirement is to detect activation in regions affected by strong susceptibility gradients.