English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies

MPS-Authors
/persons/resource/persons19878

Nakamura,  Akinori
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nagano-Saito, A., Kato, T., Arahata, Y., Washimi, Y., Nakamura, A., Abe, Y., et al. (2004). Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies. NeuroImage, 22(2), 553-561. doi:10.1016/j.neuroimage.2004.01.030.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-A44A-B
Abstract
Objective: Using 6-[18F]fluoro-l-dopa (FDOPA) and [18F]fluorodeoxyglucoce (FDG) positron emission tomography (PET), multiple regression analyses were performed to determine the specific brain regions that are related to cognitive and motor symptoms in nondemented patients with Parkinson's disease. Methods: Spatially normalized images of FDOPA influx rate constant (Ki) values and relative regional cerebral metabolic rates for glucose (rrCMRglc) were created. Raven's Coloured Progressive Matrices (RCPM) scores and the Unified Parkinson's Disease Rating Scale (UPDRS) motor scores were used to determine the patients' cognitive and motor functions, respectively. Multiple correlation analyses between the FDOPA and FDG images and the cognitive and motor scores were performed for each voxel. Results: RCPM score was significantly positively correlated with the FDOPA Ki in the left hippocampus and with the rrCMRglc in the left middle frontal gyrus and right retrosplenial cortex. Motor function was significantly positively correlated with the FDOPA Ki in the bilateral striatum and with the rrCMRglc in association areas and primary visual cortex. The level of motor function was significantly inversely correlated with the FDOPA Ki in the anterior cingulate gyrus and with the rrCMRglc in bilateral primary motor cortex and right putamen. Conclusions: Changes of striatal FDOPA uptake and rrCMRglc in the primary motor cortex likely represent dysfunction in the motor system involving the corticobasal ganglia-thalamocortical loop. Change of FDOPA uptake in the anterior cingulate gyrus may be related to up-regulation of dopamine synthesis in surviving dopamine neurons. The regions where correlation with cognitive function was observed belong to a cognitive frontoparietal–hippocampal network.