English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Differential effects of auditory and visual signals on clock speed and temporal memory

MPS-Authors
/persons/resource/persons19922

Penney,  Trevor B.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1770-1787. doi:10.1037/0096-1523.26.6.1770.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-AB6F-E
Abstract
The effects of signal modality on duration classification in college students were studied with the duration bisection task. When auditory and visual signals were presented in the same test session and shared common anchor durations, visual signals were classified as shorter than equivalent duration auditory signals. This occurred when auditory and visual signals were presented sequentially in the same test session and when presented simultaneously but asynchronously. Presentation of a single modality signal within a test session, or both modalities but with different anchor durations did not result in classification differences. The authors posit a model in which auditory and visual signals drive an internal clock at different rates. The clock rate difference is due to an attentional effect on the mode switch and is revealed only when the memories for the short and long anchor durations consist of a mix of contributions from accumulations generated by both the fast auditory and slower visual clock rates. When this occurs auditory signals seem longer than visual signals relative to the composite memory representation.