Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of anisotropic conductivity of the white matter tissue on EEG source reconstruction a FEM simulation study

MPG-Autoren
/persons/resource/persons19530

Anwander,  Alfred
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19779

Knösche,  Thomas R.
Methods and Development Unit MEG and EEG: Signal Analysis and Modelling, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20114

Wolters,  Carsten Hermann
Methods and Development Unit MEG and EEG: Signal Analysis and Modelling, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

güllmar_influence.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Güllmar, D., Reichenbach, J. R., Anwander, A., Knösche, T. R., Wolters, C. H., Eiselt, M., et al. (2005). Influence of anisotropic conductivity of the white matter tissue on EEG source reconstruction a FEM simulation study. International Journal of Bioelectromagnetism, 7(1), 108-110.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-BCF4-8
Zusammenfassung
The aim of this study was to quantify the influence of the inclusion of anisotropic conductivity on EEG source reconstruction. We applied high-resolution finite element modeling and performed forward and inverse simulation with over 4000 single dipoles placed around an anisotropic volume block (with an anisotropic ratio of 1:10) in a rabbit brain. We investigated three different orientation of the dipoles with respect to the anisotropy in the white matter block. We found a weak influence of the anisotropy in the forward simulation on the electric potential. The relative difference measure (RDM) between the potentials simulated with and without taking into account anisotropy was less than 0.009. The changes in magnitude (MAG) ranged from 0.944 to 1.036. Using the potentials of the forward simulation derived with the anisotropic model and performing source reconstruction by employing the isotropic model led to dipole shifts of up to 2 mm, however the mean shift over all dipoles and orientations of 0.05 mm was smaller than the grid size of the FEM model (0.6 mm). However, we found the source strength estimation to be more influenced by the anisotropy (up to 7-times magnified dipole strength).