English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interfacing mind and brain: A neurocognitive model of recognition memory

MPS-Authors
/persons/resource/persons19849

Mecklinger,  Axel
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mecklinger, A. (2000). Interfacing mind and brain: A neurocognitive model of recognition memory. Psychophysiology, 37(5), 565-582. doi:10.1111/1469-8986.3750565.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-BE97-E
Abstract
A variety of processes contribute to successful recognition memory, some of which can be associated with spatiotemporally distinct event-related potential old/new effects. An early frontal and a subsequent parietal old/new effect are correlated with the familiarity and recollection subcomponents of recognition memory, respectively, whereas a late, postretrieval old/new effect seems to reflect an ensemble of evaluation processes that are set by the task context in which retrieval occurs. Both the early frontal and the parietal old/new effects are differentially modulated by the informational content (e.g., object forms and spatial locations) of recognition and seem to rely on brain systems damaged in amnesia. The late frontal effect appears to reflect prefrontal cortex activation. A neurophysiologically based model of recognition memory retrieval is presented and it is shown that coupling recognition memory subprocesses with distinct old/new effects allow examination of the time course of the processes that contribute to correct and to illusory memories. In conjunction with event-related functional magnetic resonance imaging activation patterns the brain systems recruited by various aspects of episodic memory retrieval can be identified.