日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Localization of executive functions in dual-task performance with fMRI

MPS-Authors
/persons/resource/persons20037

Szameitat,  André J.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19983

Schubert,  Torsten
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19872

Müller,  Karsten
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20070

von Cramon,  D. Yves
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

szameitat.pdf
(全文テキスト(全般)), 791KB

付随資料 (公開)
There is no public supplementary material available
引用

Szameitat, A. J., Schubert, T., Müller, K., & von Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184-1199. doi:10.1162/089892902760807195.


引用: https://hdl.handle.net/11858/00-001M-0000-0010-C449-7
要旨
We report a study that investigated the neuroanatomical correlates of executive functions in dual-task performance with functional magnetic resonance imaging. Participants performed an auditory and a visual three-choice reaction task either separately as single tasks or concurrently as dual tasks. In the dual-task condition, two stimuli were presented in rapid succession to ensure interference between the component tasks (psychological refractory period). The behavioral data showed considerable performance decrements in the dual-task compared to the single-task condition. Dual-task-related activation was detected with two different neuroimaging methods. First, we determined dual-task-related activation according to the method of cognitive subtraction. For that purpose, activation in the dual-task was compared directly with activation in the single-task conditions. This analysis revealed that cortical areas along the inferior frontal sulcus (IFS), the middle frontal gyrus (MFG), and the intraparietal sulcus (IPS) are involved in dual-task performance. The results of the subtraction method were validated with the method of parametric manipulation. For this purpose, a second dual-task condition was introduced, where the difficulty of the dual-task coordination was increased compared with the first dual-task condition. As expected, behavioral dual-task performance decreased with increased dual-task difficulty. Furthermore, the increased dual-task difficulty led to an increase of activation in those cortical regions that proved to be dual-task related with the subtraction method, that is, the IFS, the MFG, and the IPS. These results support the conclusion that dorsolateral prefrontal and superior parietal cortices are involved in the coordination of concurrent and interfering task processing.