English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Premotor cortex in observing erroneous action: An fMRI study

MPS-Authors
/persons/resource/persons19839

Manthey,  Sophie
Department Cognitive Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19985

Schubotz,  Ricarda Ines
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20070

von Cramon,  D. Yves
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

manthey.pdf
(Any fulltext), 400KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Manthey, S., Schubotz, R. I., & von Cramon, D. Y. (2003). Premotor cortex in observing erroneous action: An fMRI study. Cognitive Brain Research, 15(3), 296-307. doi:10.1016/S0926-6410(02)00201-X.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-D1E0-0
Abstract
The lateral premotor cortex (PMC) is involved during action observation in monkeys and humans, reflecting a matching process between observed actions and their corresponding motor schemata. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate if paying attention to the two observable action components, objects and movements, modulates premotor activation during the observation of actions. Participants were asked to classify presented movies as showing correct actions, erroneous actions, or senseless movements. Erroneous actions were incorrect either with regard to employed objects, or to performed movements. The experiment yielded two major results: (1) The ventrolateral premotor cortex (vPMC) and the anterior part of the intraparietal sulcus (aIPS) are strongly activated during the observation of actions in humans. Premotor activation was dominantly located within Brodmann Area (BA) 6, and sometimes extended into BA 44. (2) The presentation of object errors and movements errors allowed to disentangle brain activations corresponding to the analysis of movements and objects in observed actions. Left premotor areas were more involved in the analysis of objects, whereas right premotor areas were dominant in the analysis of movements. It is suggested that the analysis of categorical information, like objects, and that of coordinate information, like movements, are pronounced in different hemispheres.