English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength

MPS-Authors
/persons/resource/persons19800

Kruggel,  F.
Department Cognitive Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20106

Wiggins,  Christopher J.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19711

Herrmann,  Christoph S.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20070

von Cramon,  D. Yves
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kruggel, F., Wiggins, C. J., Herrmann, C. S., & von Cramon, D. Y. (2000). Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength. Magnetic Resonance in Medicine, 44(2), 277-282. doi:10.1002/1522-2594(200008)44:2<277:AID-MRM15>3.0.CO;2-X.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-D4DA-2
Abstract
The feasibility of recording event-related potentials (ERP) during functional MRI (fMRI) scanning was studied. Using an alternating checkerboard stimulus in a blocked presentation, visually evoked potentials were obtained with their expected configuration and latencies. A clustered echoplanar imaging protocol was applied to observe the hemodynamic response due to the visual stimulus interleaved with measuring ERPs. Influences of the electrode/amplifier set up on MRI scanning and the scanning process on the recording of electrophysiological signals are reported and discussed. Artifacts overlaid on the electrophysiological recordings were corrected by post hoc filtering methods presented here. Implications and limitations of conducting combined ERP/fMRI experiments using higher-level cognitive stimuli are discussed.