Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reduced power multislice MDEFT imaging

MPG-Autoren
/persons/resource/persons19896

Norris,  David G.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Norris, D. G. (2000). Reduced power multislice MDEFT imaging. Journal of Magnetic Resonance Imaging, 11(4), 445-451. doi:10.1002/(SICI)1522-2586(200004)11:4<445:AID-JMRI13>3.0.CO;2-T.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-D4F3-8
Zusammenfassung
A novel method is presented for acquiring multislice T1-weighted images. The method utilizes non-slice-selective inversion pulses followed by a series of slice-selective excitations. k-space is divided into a number of segments equal to the number of slices. Successive segments of k-space are assigned to successive slice-selective pulses, and the order in which the slices are excited is manipulated to ensure that images of each slice have identical contrast and point spread function (PSF). This method is applied to the MDEFT experiment, a particular version of the inversion recovery experiment. The implications of this acquisition scheme on the PSF are examined, and it is shown that, provided the k-space modulation function does not change sign, a good PSF is achieved. For a given maximum number of slices, the total experimental duration depends only on TR and the number of phase-encoding steps. A method of accelerating the experiment by multiply exciting each slice is described. An experimental demonstration of the proposed sequences is given by imaging the human head at 3 T.