English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensory and cognitive mechanisms for preattentive change detection in auditory cortex

MPS-Authors
/persons/resource/persons20070

von Cramon,  D. Yves
Department Cognitive Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Opitz, B., Schröger, E., & von Cramon, D. Y. (2005). Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. European Journal of Neuroscience: European Neuroscience Association, 21(2), 531-535. doi:10.1111/j.1460-9568.2005.03839.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-D8B2-B
Abstract
In order to react adequately to potentially relevant information outside the focus of attention, our brain preattentively scans the acoustic environment for irregularities. Two different mechanisms are currently discussed: (i) a sensory one based on differential states of refractoriness of neurons sensitive to the features of a regular event and of neurons sensitive to features of an irregular event; (ii) a cognitive one based on a comparison of short-lived memory representations encoding current stimulation and the invariance inherent in recent recurrent stimulation. Here, we identified regions that mediate either of the two mechanisms by combining functional magnetic resonance imaging with an experimental protocol controlling for refractoriness. The sensory mechanism was associated with activity in the primary auditory cortex, whereas the cognitive one revealed activity in nonprimary auditory areas in the anterior part of Heschl's Gyrus. Moreover, it turned out that in the traditional oddball paradigm both mechanisms contribute to irregularity detection.