English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Wavelet statistics of functional MRI data and the general linear model

MPS-Authors
/persons/resource/persons19872

Müller,  Karsten
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19821

Lohmann,  Gabriele
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20125

Zysset,  Stefan
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20070

von Cramon,  D. Yves
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

mueller_wavelet.pdf
(Any fulltext), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Müller, K., Lohmann, G., Zysset, S., & von Cramon, D. Y. (2003). Wavelet statistics of functional MRI data and the general linear model. Journal of Magnetic Resonance Imaging, 17(1), 20-30. doi:10.1002/jmri.10219.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-E9ED-B
Abstract
PURPOSE: To improve the signal-to-noise ratio (SNR) of functional magnetic resonance imaging (fMRI) data, an approach is developed that combines wavelet-based methods with the general linear model. MATERIALS AND METHODS: Ruttimann et al. (1) developed a wavelet-based statistical procedure to test wavelet-space partitions for significant wavelet coefficients. Their method is applicable for the detection of differences between images acquired under two experimental conditions using long blocks of stimulation. However, many neuropsychological questions require more complicated event-related paradigms and more experimental conditions. Therefore, in order to apply wavelet-based methods to a wide range of experiments, we present a new approach that is based on the general linear model and wavelet thresholding. RESULTS: In contrast to a monoresolution filter, the application of the wavelet method increased the SNR and showed a set of clearly dissociable activations. Furthermore, no relevant decrease of the local maxima was observed. CONCLUSION: Wavelet-based methods can increase the SNR without diminishing the signal amplitude, while preserving the spatial resolution of the image. The anatomical localization is strongly improved.