Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

What does the frontomedian cortex contribute to language processing: Coherence or theory of mind?

MPG-Autoren
/persons/resource/persons19635

Ferstl,  Evelyn C.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20070

von Cramon,  D. Yves
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

16475.pdf
(beliebiger Volltext), 332KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ferstl, E. C., & von Cramon, D. Y. (2002). What does the frontomedian cortex contribute to language processing: Coherence or theory of mind? NeuroImage, 17(3), 1599-1612. doi:10.1006/nimg.2002.1247.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-EA6B-9
Zusammenfassung
The frontomedian cortex (FMC) has been shown to be important for coherence processes in language comprehension, i.e., for establishing the pragmatic connection between successively presented sentences. The same brain region has a role during theory-of-mind processes, i.e., during the attribution of other people's actions to their motivations, beliefs, or emotions. In this study, we used event-related functional magnetic resonance imaging at 3 T to disentangle the relative contributions of the FMC to theory-of-mind (ToM) and coherence processes, respectively. The BOLD response of nine participants was recorded while they listened to pragmatically coherent or unrelated sentence pairs. Using a logic instruction for inanimate sentence pairs, ToM processing was discouraged during the first part of the experiment. Using explicit ToM instructions for sentence pairs mentioning human protagonists, ToM processing was induced during the second part. In three of the resulting four conditions a significant increase in the BOLD response was observed in FMC: when ToM instructions were given, both coherent and incoherent trials elicited frontomedian activation, in replication of previous results showing involvement of the FMC during ToM tasks. When logic instructions were given, the coherent trials, but not the incoherent trials, activated the FMC. These results clearly show that the FMC plays a role in coherence processes even in the absence of concomitant ToM processes. The findings support the view of this cortex having a domain-independent functionality related to volitional aspects of the initiation and maintenance of nonautomatic cognitive processes.