English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

First-principles modeling of localized d states with the GW@LDA+U approach

MPS-Authors
/persons/resource/persons21564

Gomez-Abal,  Ricardo I.
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22010

Rinke,  Patrick
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PRB-82-045108-2010.pdf
(Publisher version), 600KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jiang, H., Gomez-Abal, R. I., Rinke, P., & Scheffler, M. (2010). First-principles modeling of localized d states with the GW@LDA+U approach. Physical Review B, 82(4): 045108. doi:10.1103/PhysRevB.82.045108.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-F549-B
Abstract
First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f-electron systems [H. Jiang, R.I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U), as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d-electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U. These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with "physical" values of U provides a balanced and accurate description of both localized and itinerant states.