English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ab initio molecular simulations with numeric atom-centered orbitals

MPS-Authors
/persons/resource/persons21379

Blum,  Volker
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21543

Gehrke,  Ralf
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21598

Hanke,  Felix
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21605

Havu,  Paula
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21606

Havu,  Ville
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21998

Ren,  Xingou
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22000

Reuter,  Karsten
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., et al. (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications, 180, 2175-2196. Retrieved from http://www.fhi-berlin.mpg.de/th/th.html.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-F8D1-0
Abstract
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree–Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.