English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation

MPS-Authors
/persons/resource/persons22148

Su,  Dang Sheng
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, Q., Wang, T., Guo, H., Liang, C., Liu, S., Zhang, Z., et al. (2009). Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation. Microporous and Mesoporous Materials, 120(3), 460-466. doi:10.1016/j.micromeso.2008.12.029.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-F981-B
Abstract
A simple approach has been developed to synthesize the carbon/zeolite T composite membrane materials with the high gas separation performance. The precursors of the composite membrane are composed of polyimide matrix and dispersed zeolite T particles. The composite membranes prepared by pyrolysis at 973 K show excellent gas (H2, CO2, O2, N2, and CH4) permeability and selectivity (O2/N2, CO2/CH4) for both single gas and mixed-gas. The gas separation performance of the composite membranes can be controlled in a wide range by only changing the zeolite T particle size. The maximum selectivity of O2 over N2 (21/79 mol%) for the composite membranes with the least zeolite T particle (0.5 μm) is 15 with an O2 permeability of 347 Barrers (1 Barrer = 7.5 × 10−18 m2 s−1 Pa−1) and the selectivity of CO2 over CH4 (50/50 mol%) reaches a value of 179 with a CO2 permeability of 1532 Barrers. It is believed that the increase of gas permeability is attributed to the ordered microchannels in the zeolite and the interfacial gaps formed between zeolite and carbon matrix in the composite membranes. And the gas selectivity is tuned by the size of interfacial gaps which are varied with the zeolite particle size. This technique will provide a simple and convenient route to efficiently improve the trade-off relationship between the permeability and the selectivity and enable the construction of carbon-based composite materials with novel functionalities in membrane science.