English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the CO-Oxidation over Oxygenated Ruthenium

MPS-Authors
/persons/resource/persons22026

Rosenthal,  Dirk
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21557

Girgsdies,  Frank
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22174

Timpe,  Olaf
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21378

Blume,  Raoul
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22227

Weinberg,  Gisela
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

404116Rosenthal.pdf
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rosenthal, D., Girgsdies, F., Timpe, O., Blume, R., Weinberg, G., Teschner, D., et al. (2009). On the CO-Oxidation over Oxygenated Ruthenium. Zeitschrift für Physikalische Chemie, 223(1-2), 183-207. Retrieved from http://dx.doi.org/10.1524/zpch.2009.6032.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-FA25-6
Abstract
The oxidation of carbon monoxide over polycrystalline ruthenium dioxide (RuO2) powder was studied in a packed-bed reactor and by bulk and surface analytical methods. Activity data were correlated with bulk phases in an in-situ X-ray diffraction (XRD) setup at atmospheric pressure. Ruthenium dioxide was pre-calcined in pure oxygen at 1073 K. At this stage RuO2 is completely inactive in the oxidation of CO. After a long induction period in the feed at 503 K RuO2 becomes active with 100% conversion, while in-situ XRD reveals no changes in the RuO2 diffraction pattern. At this stage selective roughening of apical RuO2 facets was observed by scanning electron microscopy (SEM). Seldom also single lateral facets are roughened. EDX indicated higher oxygen content in the following order: flat lateral facets > rough lateral facets > rough apical facets. Further, experiments in the packed bed reactor indicated oscillations in the CO2 formation rate. At even higher temperatures in reducing feed (533–543 K) the sample reduces to ruthenium metal according to XRD. The reduced particles exhibiting lower ignition temperature are very rough with cracks and deep star-shaped holes. An Arrhenius plot of the CO2 formation rate below the ignition temperature reveals the reduced samples to be significantly more active based on mass unit and shows lower apparent activation energy than the activated oxidized sample. Micro-spot X-ray photoelectron spectroscopy (XPS) and XPS microscopy experiments were carried out on a Ru(0001) single crystal exposed to oxygen at different temperature. Although low energy electron diffraction (LEED) images show a strong 1×1 pattern, the XPS data indicated a wide lateral inhomogeneity with different degree of oxygen dissolved in the subsurface layers. All these and the literature data are discussed in the context of different active states and transport issues, and the metastable nature of a phase mixture under conditions of high catalytic activity.