English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: Role of the metallic substrate

MPS-Authors
/persons/resource/persons21592

Hagen,  Sebastian
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21701

Kate,  Peter
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hagen, S., Kate, P., Leyssner, F., Nandi, D., Wolf, M., & Tegeder, P. (2008). Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: Role of the metallic substrate. Journal of Chemical Physics, 129(16), 164102–1-164102–8. doi:10.1063/1.2997343.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-FBB0-2
Abstract
Two-photon photoemission (2PPE) spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely di®erent compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change of the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find, that photoexcitation above a threshold hn ≈2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital (HOMO) of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a threshold like behavior below hn ≈2.2 eV and above hn≈4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.