Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach

MPG-Autoren
/persons/resource/persons125143

Freysoldt,  Christoph
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21484

Eggert,  Philipp
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22010

Rinke,  Patrick
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22069

Schindlmayr,  Arno
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

360759.pdf
(Preprint), 365KB

PRB-77-235428-2008.pdf
(Verlagsversion), 281KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Freysoldt, C., Eggert, P., Rinke, P., Schindlmayr, A., & Scheffler, M. (2008). Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach. Physical Review B, 77(23): 235428. doi:10.1103/PhysRevB.77.235428.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-FC9C-A
Zusammenfassung
In the context of photoelectron spectroscopy, the GW approach has developed into the method of choice for computing excitation spectra of weakly correlated bulk systems and their surfaces. To employ the established
computational schemes that have been developed for three-dimensional crystals, two-dimensional systems are
typically treated in the repeated-slab approach. In this work we critically examine this approach and identify
three important aspects for which the treatment of long-range screening in two dimensions differs from the bulk: (1) anisotropy of the macroscopic screening, (2) k-point sampling parallel to the surface, (3) periodic repetition and slab-slab interaction. For prototypical semiconductor (silicon) and ionic (Na1) thin films we quantify the individual contributions of points (1) to (3) and develop robust and efficient correction schemes derived from the classic theory of dielectric screening.