English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electrostatic trapping of metastable NH molecules

MPS-Authors
/persons/resource/persons21634

Hoekstra,  Steven
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21872

Metsälä,  Markus
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22306

Zieger,  Peter C.
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22061

Scharfenberg,  Ludwig
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21554

Gilijamse,  Joop Jelte
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21858

Meerakker,  Sebastiaan Y. T. van de
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

321726.pdf(Hoekstra).pdf
(Preprint), 617KB

321726.pdf
(Preprint), 452KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hoekstra, S., Metsälä, M., Zieger, P. C., Scharfenberg, L., Gilijamse, J. J., Meijer, G., et al. (2007). Electrostatic trapping of metastable NH molecules. Physical Review A, 76(6): 063408. doi:10.1103/PhysRevA.76.063408.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-FF35-5
Abstract
We report on the Stark deceleration and electrostatic trapping of ¹⁴NH (a¹Δ) radicals. In the trap, the molecules are excited on the spin-forbidden A³∏ <- a¹Δ transition and detected via their subsequent fluorescence to the X³∑⁻ ground state. The 1/e trapping time is 1.4 ± 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a¹Δ, v=0, ,J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.