English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies.

MPS-Authors
/persons/resource/persons21554

Gilijamse,  Joop
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21772

Küpper,  Jochen
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21634

Hoekstra,  Steven
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22191

Vanhaecke,  Nicolas
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21858

Meerakker,  Sebastiaan Y. T. van de
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

265078.pdf
(Preprint), 321KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gilijamse, J., Küpper, J., Hoekstra, S., Vanhaecke, N., Meerakker, S. Y. T. v. d., & Meijer, G. (2006). Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies. Physical Review A, 73, 063410-1-063410-7. doi:10.1103/PhysRevA.73.063410.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-052F-A
Abstract
We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline, pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40% of the number of trapped OH radicals.