English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Local structure determination of a chiral adsorbate: Alanine on Cu(110)

MPS-Authors
/persons/resource/persons22055

Sayago,  David I.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21969

Polcik,  Martin
Chemical Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sayago, D. I., Polcik, M., Nisbet, G., Lamont, C. L. A., & Woodruff, D. P. (2005). Local structure determination of a chiral adsorbate: Alanine on Cu(110). Surface Science, 590(1), 76-87. doi:10.1016/j.susc.2005.06.008.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-077C-8
Abstract
N 1s and O 1s scanned-energy mode photoelectron diffraction (PhD) has been used to investigate the local structure of a single enantiomer of deprotonated alanine, alaninate, NH2CH3CHCOO–, on Cu(1 1 0) in the (3 x 2) phase. The local site is found to be similar to that of glycinate on Cu(1 1 0), with the N atoms in near-atop sites and the O atoms sites consistent with bonding to single surface Cu atoms but substantially off-atop. Unlike the Cu(1 1 0)(3 x 2)pg-glycinate phase, however, in which the two molecular species per unit mesh are mirror images of one another in identical local sites, the intrinsic chirality of l-alaninate means that the two molecules per unit mesh of the (3 x 2) surface phase occupy slightly different local sites. However, an excellent fit to the PhD data can be achieved by a minor modification of the structure found in DFT calculations by R.B. Rankin and D.S. Sholl [Surf. Sci. 574 (2005) L1] in which the heights of the N and O atoms above the surface are reduced by approximately 0.1 Å. The resulting average N–Cu and O–Cu values are 2.02 and 1.98 Å, respectively, with an estimated precision of ±0.03 Å. These bondlengths are shorter than those obtained from DFT by 0.08 and 0.10 Å, respectively.