日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Folding Structures of Isolated Peptides as Revealed by Gas-Phase Mid-Infrared Spectroscopy

MPS-Authors
/persons/resource/persons21614

Helden,  Gert von
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bakker, J. M., Plützer, C., Hünig, I., Häber, T., Compagnon, I., Helden, G. v., Meijer, G., & Kleinermanns, K. (2005). Folding Structures of Isolated Peptides as Revealed by Gas-Phase Mid-Infrared Spectroscopy. ChemPhysChem, 6(1), 120-128. doi:10.1002/cphc.200400345.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-09B5-3
要旨
To understand the intrinsic properties of peptides, which are determined by factors such as intramolecular hydrogen bonding, van der Waals bonding and electrostatic interactions, the conformational landscape of isolated protein building blocks in the gas phase was investigated. Here, we present IR-UV double-resonance spectra of jet-cooled, uncapped peptides containing a tryptophan (Trp) UV chromophore in the 1000-2000 cm-1 spectral range. In the series Trp, Trp-Gly and Trp-Gly-Gly (where Gly stands for glycine), the number of detected conformers was found to decrease from six (Snoek et al., PCCP, 2001, 3, 1819) to four and two, respectively, which indicates a trend to relaxation to a global minimum. Density functional theory calculations reveal that the OH in-plane bending vibration, together with the NH in-plane bending and the peptide CO stretching vibrations, is a sensitive probe to hydrogen bonding and, thus, to the folding of the peptide backbone in these structures. This enables the identification of spectroscopic fingerprints for the various conformational structures. By comparing the experimentally observed IR spectra with the calculated spectra, a unique conformational assignment can be made in most cases. The IR-UV spectrum of a Trp-containing nonapeptide (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu) was recorded as well and, although the IR spectrum is less well-resolved (and it probably results from different isomers), groups of amide I (peptide CO stretching) and amide II (NH in-plane bending) bands can still be recognised, in agreement with predictions at the AM1 level.