English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Die Genese von (MoVW)5O14 Precursoren in wässeriger Lösung

MPS-Authors
/persons/resource/persons21741

Knobl,  Stefan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21341

Beato,  Pablo
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21914

Niemeyer,  Dirk
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Knobl, S., Beato, P., Niemeyer, D., Schlögl, R., Zenkovets, G. A., Kruykova, G. N., et al. (2003). Die Genese von (MoVW)5O14 Precursoren in wässeriger Lösung. Poster presented at 36 Jahrestreffen Deutscher Katalytiker, Weimar.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-10E1-C
Abstract
Motivation Molybdän-, Vanadium- und Wolframhaltige Suboxide finden vielfältigen Einsatz als Partialoxidationskatalysatoren. Beispielsweise wird die Partialoxidation von Acrolein zu Acrylsäure an einem solchen System durchgeführt. Kürzlich wurde (MoVW)5O14 phasenrein dargestellt. Verbindungen mit identischem Röntgenbeugungsmustern zeigten allerdings unterschiedliche katalytische Aktivität. Dies ist auf die unterschiedliche "Realstruktur" der Katalysatoren zurückzuführen [1]. Diese Arbeit soll den Reaktionsmechanismus in Lösung verdeutlichen, der zu einem Precursor führt, der dann beim Kalzinieren die Einphasigkeit des Systems gewährleistet. Ferner wird untersucht welche Parameter auf die Defekte im Festkörper Einfluss haben und damit die "Realstruktur" mitbestimmen. Experimentelles Eine detailierte Präparationsvorschrift findet sich in der Literatur [1]. Zur Synthese des Suboxides werden entsprechende Mengen von AHM, AMT und Vanadyloxalat gelöst, gemischt, sprühgetrocknet und anschließend kalziniert. Die Strukturen in Lösung werden mit UV/Vis, Raman und ESR Spektroskopie untersucht. Ergebnisse Eine Erniedrigung des pH-Wertes von pH=5,5 auf pH=3 führt zu einem starken Ansteigen der Absorption im Bereich von 30000 cm-1 bis 50000 cm-1. Diese signifikante Veränderung im Metall-Ligand Charge Transfer wird durch eine Protonierung der Sauerstoffatome verursacht. Durch die Zugabe von AMT wird dieser Effekt noch verstärkt. Zusätzlich zu diesem Effekt zeigt sich bei der portionsweisen Zugabe von Vanadyloxalat eine Bande zwischen 18000 cm-1 und 19000 cm-1. Die Blauverschiebung bei höheren Vanadiumkonzentrationen ist durch die fortschreitende Vernetzung bzw. Polymerisation zu erklären. Die Lage der Bande lässt auf einen Intervalence Charge Transfer Übergang schließen. Dieser Befund wird durch das ESR Experiment bestätigt. Je höher die Vanadyloxalatkonzentration, desto weniger isolierte Vanadyleinheiten liegen vor. Außerdem macht das ESR Spektrum deutlich, dass eine Vernetzung zu größeren oligomeren oder polymeren Einheiten stattfindet. Diese Spezies werden durch Vanadylbrücken miteinander verknüpft und können somit eine oligomere oder polymere Spezies in Lösung bilden (Schema 1). Ein Literaturvergleich zeigt, dass im vorliegenden pH-Bereich die Existenz von [HMo7O24]5- und [Mo8O26]4- sehr wahrscheinlich ist. Für [Mo36O112(H2O)16]8- spricht allerdings, dass dieses Ion eine pentagonale Bipyramide enthält, also genau die Struktureinheit die in Mo5O14 auftaucht.